Isocudraxanthone K Induces Growth Inhibition and Apoptosis in Oral Cancer Cells via Hypoxia Inducible Factor-1α

نویسندگان

  • Mee-Ran Shin
  • Hwa-Jeong Lee
  • Soo-Kyung Kang
  • Q-Schick Auh
  • Young-Man Lee
  • Youn-Chul Kim
  • Eun-Cheol Kim
چکیده

Isocudraxanthone K (IK) is a novel, natural compound from a methanol extract of the root bark of Cudrania tricuspidata. It has not been shown previously that IK possessed antitumor activity. We investigated the antitumor effects and molecular mechanism of IK and related signal transduction pathway(s) in oral squamous cell carcinoma cells (OSCCCs). The MTT assay revealed that IK had an antiproliferative effect on OSCCCs, in a dose- and time-dependent manner. IK induced apoptosis in OSCCCs, as identified by a cell-cycle analysis, annexin V-FITC and propidium iodide staining, and the nuclear morphology in cell death. IK caused time-dependent phosphorylation of Akt, p38, and ERK (extracellular signal-regulated kinase). In addition, IK increased the cytosolic to nuclear translocation of nuclear factor-κB (NF-κB) p65 and the degradation and phosphorylation of IκB-α in HN4 and HN12 cells. Furthermore, IK treatment downregulated hypoxia-inducible factor 1α (HIF-1α) and its target gene, vascular endothelial growth factor (VEGF). Cobalt chloride (CoCl2), a HIF-1α activator, attenuated the IK-induced growth-inhibiting and apoptosis-inducing effects, and blocked IK-induced expression of apoptosis regulatory proteins, such as Bax, Bcl-2, caspase-3, caspase-8, and caspase-9, and cytochrome c. Collectively, these data provide the first evidence of antiproliferative and apoptosis-inducing effects of IK as a HIF-1α inhibitor and suggest it may be a drug candidate for chemotherapy against oral cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model

Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...

متن کامل

Dual targeting of the androgen receptor and hypoxia-inducible factor 1α pathways synergistically inhibits castration-resistant prostate cancer cells.

Enzalutamide is a potent second-generation androgen receptor (AR) antagonist with activity in metastatic castrate-resistant prostate cancer (CRPC). Although enzalutamide is initially effective, disease progression inevitably ensues with the emergence of resistance. Intratumoral hypoxia is also associated with CRPC progression and treatment resistance. Given that both AR and hypoxia inducible fa...

متن کامل

LW6, a hypoxia-inducible factor 1 inhibitor, selectively induces apoptosis in hypoxic cells through depolarization of mitochondria in A549 human lung cancer cells

Hypoxia‑inducible factor 1 (HIF‑1) activates the transcription of genes that act upon the adaptation of cancer cells to hypoxia. LW6, an HIF‑1 inhibitor, was hypothesized to improve resistance to cancer therapy in hypoxic tumors by inhibiting the accumulation of HIF‑1α. A clear anti‑tumor effect under low oxygen conditions would indicate that LW6 may be an improved treatment strategy for cancer...

متن کامل

Multimodal targeting of tumor vasculature and cancer stem-like cells in sarcomas with VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy

Vascular endothelial growth factor A (VEGF-A) inhibition with pazopanib is an approved therapy for sarcomas, but likely results in compensatory pathways such as upregulation of hypoxia inducible factor 1α (HIF-1α). In addition, cancer stem-like cells can preferentially reside in hypoxic regions of tumors and be resistant to standard chemotherapies. In this study, we hypothesized that the combin...

متن کامل

Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats

Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014